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Abstract— Recording and analysing building vibration has
been proved to be an effective approach to Structural Health
Monitoring. Based on a vibration monitoring system, this paper
focuses on analyzing building vibration through detection of
representative events. We propose an event detection method
combining signal processing and machine learning techniques,
which is demonstrated to be helpful to extract and understand
the vibration signals caused by significant environmental events
such as nearby train passings. Furthermore, we apply the
recently-developed directed information estimators in Jiao,
2012 to study mechanic wave propagation patterns inside the
building when representative events happen through causal
analysis. The results demonstrate clear patterns of building’s
vibration under different conditions, and provide insights for
monitoring, assessing and securing the structure’s health.

I. INTRODUCTION

In recent years, there has been an increasing interest in the
adoption of sensor network techniques for Structural Health
Monitoring (SHM), which enables the detection of dynamic
structural changes and therefore secures the building usage.
As one of the major approaches in this field, accelerometer-
based vibration monitoring has attracted much attention, and
a number of practical systems have been built to obtain
structural vibration data. For example, wired sensor networks
have been deployed on tall buildings [1] and suspension
brigdes [2] for vibration monitoring. Furthermore, solutions
using wireless sensor networks for SHM have also matured,
making it possible to reliably collect high precision vibration
data at a high rate with low costs [3].

While the studies of vibration data acquisition systems
have significantly progressed, our tools to analyze and under-
stand the vibration data are still far from powerful. Applying
straight-forward frequency analysis on the vibration data and
comparing its results with model parameters is a common
practice [1]-[4], which does help verify the system but
is not sufficient for us to understand how and why the
building’s vibration characteristics change [5]. When build-
ings experience abnormal conditions such as harsh loadings,
seismic events or severe environmental events, more tools
are needed to identify the events, analyze their influence
on the building, and finally determine the building’s health
condition in preparation for further actions. After all, such
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significant events are most crucial to building’s safety and
should be understood more deeply.

Recent advances in information theory concerning directed
information provides a new perspective for vibration data
analysis. Directed information [6] is a measure that quantifies
the causal relationship between different stochastic processes
and it plays an important role in such fields as informa-
tion processing, portfolio theory and biology [7]. While its
theoretical properties have been extensively studied, it’s not
until recently that practical estimators of directed information
were developed and proved to be helpful in analyzing various
data sets [8], [9], which makes it possible to carry out
causal analysis on vibration data based on estimated directed
information.

In this paper, we propose a scheme to detect signifi-
cant environmental events and analyze their influence on
the building’s vibration characteristics based on directed
information estimation. Specifically, we make the following
contributions:

e We deploy a vibration monitoring system in an 11-
floor office building which is located near a railway
and is therefore observably influenced by train pass-
ings. With this vibration data acquisition system in its
unique location, we build a solid basis for further data
analysis and provide an example showing how signifi-
cant environmental events can affect building vibration
characteristics.

+« We propose an event detection method for vibration
monitoring systems to identify the influence of relevant
events. We utilize signal processing techniques such as
transform analysis to preprocess the vibration data and
extract its features, after which the supervised learning
methods are applied to classify patterns representing
different events based on prior training. We evaluate this
method with our data set and demonstrate that precise
detection can be achieved with proper algorithms.

o We apply directed information estimators to study the
building’s vibration characteristics under the influence
of train passings. With its ability to quantify the causal
relationship between stochastic processes, we charac-
terize the influence among sensors at different locations
to study the propagation of waves stimulated by trains.
Results reveal obvious patterns that provide insights to
help monitor, assess and secure the structure’s health.

The remainder of the of paper is organized as follows.
Section II Introduces the fundamentals of directed infor-
mation and its estimation. Section III explains the system



deployment. Section IV focuses on detection method and its
evaluation, while section V concentrates on applying causal
analysis on extracted events. Section VI Concludes the paper.

II. DIRECTED INFORMATION BASED CAUSAL ANALYSIS

Directed information was first introduced by Marko [6]
and Massey [10] to characterize feedback channels. As a
measure to quantify causal influence between two processes,
it serves as an alternative to widely-used Granger causality
test [11], with a significant improvement that unlike Granger
causality test, directed information approach does not require
the process pair to be jointly Gauss-Markov [12]. As a result,
its use was later extended beyond information theory to biol-
ogy [13], portfolio theory, data compression and hypothesis
testing [7].

In this paper, we introduce directed information to assist
vibration data analysis. By measuring the directed informa-
tion between each pair of processes (that is, the output series
of a vibration sensor), we obtain the likelihood of influence
between them in both directions, which are direct indicators
of their causal relationship.

Before we carry on to analyze the vibration data, a brief
introduction to the fundamentals and practical estimation
algorithms of directed information is presented in the follow-
ing subsections. Note that the introduction is by no means
comprehensive, and please refer to literature [9], [14] for
details.

We use following notations in this section. Uppercase let-
ters X, Y, ... refer to random variables , while lowercase letters
X,y,... refer to their values. Taking n as the length of the
source data series, X" denotes the n-tuple random variables
(X1,X2,...,X,) and x" denotes (x1,xz,...,x,). The alphabets
of X is in its calligraphic form, 2", whose cardinality is
denoted as |Z].

A. Directed Information

The definition of the directed information from X" to Y™
is as follows:

n
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where H(Y" || X") denotes the causally conditional entropy
[14]:
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Note that unlike mutual information, which is a well-
known concept in information theory, directed information
is not symmetric, e.g. generally I(X" — Y") £ I(Y" — X").

Furthermore, the directed information rate [14] is defined
as

I(X"—=Y") £ lim lI(X” —Y") (3)
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For the proof to the limit’s existence and its relationship
with entropy rate and causally conditional entropy rate,
please refer to [9].

B. Directed Information Estimation Algorithms

In spite of its thoroughly studied theoretical properties,
it’s also of great importance to develop practical estimation
algorithms for directed information. The problem is to es-
timate the directed information rate between two processes,
I(X" — Y™), based on source data series whose length are
usually limited.

As a key in achieving this goal, the Context Tree Weight-
ing (CTW) algorithm [15], a widely adopted sequential prob-
ability assignment, offers an effective and reliable method
to derive universal probability assignment from data with
unknown model and unknown parameters, therefore enabling
the estimation of various information measures, including
directed information. Furthermore, CTW also enjoys advan-
tages that its computational and storage complexity are both
linear in the data length, and the algorithm provides the
probability assignment directly. The estimators we apply in
this paper, which are introduced and evaluated in Literature
[9], are all based on CTW.

The applied 4 directed information estimators as follows:
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and Q denotes the probability assignment derived with
CTW method based on source data, which consists of a
set of conditional probability mass function Q(x;|x'~!) for
every x ! € 2771, Note that Q(x;|X*~!) denotes Q(x;|x' 1)
evaluated for the random sequence X =1 and such notations
as Q(y;| X\, Y"=1) or Q(Y" || X") are used accordingly. Here
function f is defined as mapping from a joint probability
mass function P(x,y) to the corresponding conditional en-

tropy:

f(P) = =} P(x.y)log, P(y|x) (10)
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TABLE I
PROPERTY OF DIRECTED INFORMATION ESTIMATORS

H Support ‘ Rates of Convergence
I (—o0,+00) O(n~"1og, n)
L || [Flogy|#|logy |Z]] | O(n'/*(logyn))*?
I [0, +e0) -
Iy [0, 4-e0) -

Literature [9] proves the convergence of the four estima-
tors to the directed information rate when length of the data
series n tends to infinity, mainly in almost sure and L; sense.
Furthermore, for estimators f; and b, the near-optimal rates
of their convergence in the minimax sense are also given,
under some mild conditions.

Apart from convergence property, the bounds of the es-
timators are also of great significance, since the directed
information rate /(X" — Y") is known to be nonnegative and
upper-bounded by log, |#/|. According to literature [9], while
estimator [; suffers the disadvantage of having no upper
bound, /, avoids it with an approach to ‘smooth’ the entropy
estimate, yielding it with an upper bound of log, |#|. How-
ever, both [} and /, have an undesirable nonzero probability
of being negative. To overcome this shortcoming, /3 and Iy
are proposed, taking forms that are always nonnegative.

A summary of properties of the four directed information
estimators is given in TABLE 1.

III. SYSTEM SETUP

We deploy a vibration sensor network in an 11-floor office
building to study its vibration characteristics under various
environmental conditions.

In order to record and analyze the building’s vibration
under significant environmental events, the location of the
building is chosen so that it neighbors a railway with only
a short distance of 80 — 140m in between, as shown in
Fig.1. More than ten trains with heavy loadings including
cargos and hundreds of passengers pass by the building
daily, casting influence that are intuitively observable by
instruments, yet not strong enough to be directly perceived
by human.

A network of accelerometers spread out in the building to
record its vibration at different locations and directions. The
precision of a single-axis sensor is 1075m/s?, with a highest
sample rate of 1024 samples per second. Accelerometers are
divided into 16 groups and deployed on the 1, 5, 8/ and
11" (top) floor of the building, with 4 groups on each floor,
whose horizontal positions are illustrated in the vertical view
in Fig.1. On the 1* and 11" floor, each group consists of 3
co-located single-axis sensors to monitor the acceleration of
west-east, north-south and vertical direction. On the 5 and
8" floor, however, each group consists of only 2 co-located
single-axis sensors to monitor the acceleration of west-east
and north-south direction. In total, 40 accelerometers are
deployed. Coaxial wires are used to connect sensors to a data
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Fig. 1. Building location and sensor deployment (vertical view)

collector at each floor, which collects and sends the vibration
data to a central server through local area networks.

IV. EVENT DETECTION

Our main objective is to study the causal relationship be-
tween each pair of vibration data series at different locations,
under the influence of significant environment events. Before
the directed information estimators are applied on vibration
data, a method is needed to identify the such influence from
the highly dynamic vibration data.

Event detection based on vibration data is hardly a new
idea. One well-studied topic is human activity detection
based on wearable accelerometers. Literature [16] first for-
mulates such detection as a classification problem and pro-
posed a machine-learning based approach, with evaluation on
vibration data produced by human-worn accelerometers to
identify common human activities such as walking, running,
standing and sitting. Further studies on event detection with
wearable devices such as [17] and [18] provide improved
performance. An alternative to wearable accelerometers ex-
ists as well, which is usually called ‘passive detection’, since
in such approach the sensors are deployed in the environment
instead of on the detection target. For example, [19] focuses
on detecting falls of the elderly with a single accelerometer
recording the floor’s vibration. More generally, vibration
data based event detection falls into the larger category of
‘temporal data mining’, where surveys such as [20] and [21]
provide comprehensive overview of problems and solutions.

In spite of the previous research, we meet and address new
challenges in our unique scenario.

1) It’s much harder to distinguish the vibration stimulated
by our detection target from interferences and noise.
Unlike previous works, where relevant signals are sig-
nificantly larger than background readings, the signals
caused by environmental events in our scenario are just
comparable to the building’s natural vibration, if not
weaker. To make the matter worse, the vibration signals
pass all the way through complex media including
ground and the building structure to the sensor, and
end up with hardly any observable pattern. Fig. 2
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Fig. 2. The output of 4 vertical accelerometers on the 11 floor. A train

passes by at around 20s and its influence lasts for about 10s. The locations
of the sensors A to D is illustrated in Fig. 1.

shows a fragment of the signals that lasts for 60s
at a sample rate of 200Hz, which includes a part
influenced by trains and demonstrates the difficulty
to identify such influence in our scenario. This is
especially the case for signals shown in Fig. 2c¢ and
Fig. 2d, because their locations are further away from
the railway (Fig. 1). Compared to the clear and regular
pattern studied in previous works, especially in human
activity recognition, this is clearly a challenge.
To address this problem, we use transform analysis
to extract features that are otherwise opaque in the
time domain (see subsection A), a widely-adopted
technique in temporal data mining [20]. We further rely
on supervised learning techniques to discover patterns
from these complex features and finally identify the
influence of our detection target (see subsection B).
2) The observation of events and their influence on the
sensors are not simultaneous, depending on where and
how we observe. This happens because the detection
targets and the sensors are not co-located, which was
not the case in previous works, especially for human
activity recognition. For previous works concerning
‘passive detection’, on the other hand, their detection
targets are close to the sensors and produce strong, rec-
ognizable signals, which makes data labeling an easy
task. In our scenario, however, a certain delay generally
exists in between and are too significant to ignore,
which makes it hard to label the vibration data. This
presents a significant challenge to the application of
supervised learning technique, which largely depends
on labeled data to train classifiers.
We propose a solution to this problem in subsection
B that determines the delay between the observed
events and their influence on sensors using cross-
correlation analysis, therefore enabling reliable training
data acquisition.

TABLE I
FOURIER ANALYSIS OF THE VIBRATION DATA IN FIG. 2A

Case Fourier Analysis Results?
fi PSDy f» PSD, f3; PSD3
I 45 657 31 079 68 050
. 46 36.79 17 1.08 67 0.52

No Train
90 2535 46 928 87 283
v 46 1523 11 0.44 91 0.36
I 45 3325 83 093 17 0.64
. I 46  6.83 11 1.99 13 0.59
Train

I 11 250 47 211 44 1.63
v 46 1779 69  0.37 16  0.30

af,(Hz) and PSD;(1%1073m?/s3) are the frequency and power
spectral density of the i largest peak, respectively.
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Fig. 3. Wavelet analysis result of the vibration data. (a) and (b) correspond
to the analysis result of sensor B (Fig. 2b) and sensor C (Fig. 2c),
respectively.

A. Preprocessing and Feature Extraction

Fourier analysis is recognized as the most widely-adopted
transform analysis method, which enjoys the advantage of
low computation complexity (with FFT) and straight-forward
physical interpretation. Here we use fourier analysis to
investigate the power spectral density (PSD) of the vibration
signal produced by sensor A (Fig. 2a), as shown in TABLE
II. We apply a moving window of 1s (that is 200 data
points, at the sample rate of 200Hz) on the vibration data,
calculate the corresponding PSD with FFT algorithm, and
record the frequency and PSD of the 3 largest peaks. We
choose some representative cases in the middle of the 'no
train’ period as well as the ’train’ period, which we label
manually. The results demonstrate that, while the fourier
analysis does reveal some differences the train brings, such
as larger peaks around 10Hz, it’s still hard to do classification
based on any simple rule.

Wavelet analysis [22] provides another transform analysis
tool that measures the similarity between a given signal
and an analyzing function. Unlike fourier analysis which
uses an infinite analyzing function e/®, wavelet analysis
utilizes the ‘wavelets’ that are localized in both time and fre-
quency domain, extracting the signal’s frequency dynamics
as well as time dynamics. This is a significant advantage in
our scenario, because the influence of the detection targets
changes in both time and frequency aspects. Furthermore,
wavelet analysis has low computation complexity and avoids
windowing problems.
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Fig. 3 presents the wavelet analysis results of two vibration
data series produced by sensor B and C (Fig. 2b and 2c,
respectively) using Continuous Wavelet Transform (CWT),
showing scales from 2 to 32. The lighter the color is,
the larger the coefficients are, indicating stronger similarity
between the signal and the analyzing function. We can clearly
observe lighter areas in both figures, ranging roughly from
20s to 40s in time and from 12 to 24 in scale, which
reflects the influence of the passing train. Note that for the
‘db3’ wavelet we use, a scaling factor of 16 stretches it’s
frequency to 10Hz, which is consistent with our findings
from fourier analysis. What’s interesting is that even for the
signal in Fig. 2c, where hardly anything can be found in time
domain, wavelet analysis succeeds in extracting its distinctive
features. Meanwhile, the low scale (high frequency) parts for
sensor B are also unique and might inspire other findings.

This subsection applies transform analysis techniques on
the vibration signals and demonstrates their capability of ex-
tracting distinctive features for event detection. In this paper
we only investigate two of these techniques and leave other
possible choices to future work. After this preprocessing
procedure, the machine learning techniques can be applied
on these features to realize event detection, as shown in the
next subsection.

B. Supervised Learning and Classification

To apply supervised learning techniques on the vibration
data, the first step is to obtain labeled data to train the
classifiers. For the reasons stated in the previous section,
simply observing the events and marking the corresponding
signals doesn’t work in our scenario because of the delay that
generally exists between the observation of events and their
influence on the sensors. We therefore propose a method to
determine this delay with cross-correlation analysis.

1) Monitor the railway, examine if there are train pass-
ings, and obtain a value for each time fragment (e.g.
Is) indicating train’s existence in observation. We
name it ‘observation sequence’. Treating trains heading
different directions separately, we get one ‘observation
sequence’ for each direction.

2) Divide the vibration data into fragments of the same
length and map the data in each fragment into a single
value indicating the likelihood that this fragment is
influenced by a train. With the knowledge gained from
transform analysis in the previous subsection, we use
transform coefficients to determine this mapping (e.g,
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Fig. 5. Detection accuracy evaluation. RF is short for Random Forest

algorithm and BN for Bayesian Network algorithm.

the wavelet coefficients with scale 16). This is by no
means a precise classification, but a fair estimation
that is good enough for the purpose of this subsection.
We name it ‘influence sequence’, which has the same
length with ‘observation sequence’.

3) Calculate the cross-correlation between each ‘event
sequence’ and the ‘influence sequence’. The time shift
with which the maximum cross-correlation value ap-
pears is regarded as the most possible delay between
the two sequences.

The result of cross-correlation analysis is shown in Fig.
4, which demonstrates the significant delay between the
observation of events and their influence on the sensors. It
turns out that our observation appears 5s earlier for trains
heading north, and 6s later for the opposite. Combining this
delay with the ‘observation sequence’ we already have, we
solve the data labeling problem.

Next we apply some of the widely-recognized supervised
learning algorithms on our labeled data to train classifiers for
event detection. Due to the lack of space, in this paper we
only consider two of the applicable algorithms, the Random
Forest algorithm [23] and the Bayesian Network algorithm
[24]. The former is a decision tree style algorithm that uses
randomized subsets to train a forest of decision trees and
choose the mode of their outputs as the classification result.
The latter, on the other hand, learns the conditional depen-
dencies of the random input variables to form a probabilistic
graph, and produce outputs accordingly. We use the Weka
platform [25] to apply these algorithms on our data sets, and
the evaluation results are presented and discussed in the next
subsection.

C. Evaluation

We use the 10-fold cross validation method to evaluate the
classification accuracy, which is a widely adopted criterion
in machine learning that helps reduce the stress of limited
labeled data [26].
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Our data set for classifier training and evaluation contains
a total of 440s vibration data at the sample rate of 200Hz,
including 140s labeled ‘Train’ by tens of trains and 300s
labeled ‘No Train’, which is produced by the same sensor,
e.g. sensor A in Fig. 1, on the 11" floor. We divide the
vibration data into fragments (or windows) and extract the
feature of each fragment using methods in subsection A.
For fourier analysis, the features are the frequency and PSD
parameter of the largest 3 peaks, while for wavelet analysis,
the features are the average absolute coefficient for each scale
level ranging from 1 to 32, with a magnitude of 2.

Changing the window length and the classification al-
gorithm, we obtain the detection accuracy evaluation in
Fig. 5. Generally, the detection accuracy is above 85%
under all setups, and accuracy above 97% is achievable. For
wavelet analysis based methods, the accuracy improves as
the window length increases, approaching 100% in the end,
which was not the case for fourier transform based analysis.
The comparison reveals that wavelet analysis performs better,
while the Random Forest algorithm and the Bayesian Net-
work algorithm don’t make much difference on this data set.
Note that here the detection accuracy is measured fragment-
wise, not event-wise, because our objective is to determine
whether each fragment is influenced by the train and finally
form a clear picture of the building’s vibration characteristics
under environmental event’s.

V. CAUSAL ANALYSIS

This section focuses on applying directed information
based causal analysis to the vibration data. After we rec-
ognize the train’s influence on the building’s vibration char-
acteristics, we divide the data into two parts depending on
whether it’s influenced by the train or not. Then the directed
information estimators are applied on each part of the data
to investigate the causal influences among each pair of the
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Fig. 7. Directed information analysis result

sensors, as well as how they change under significant events’
influence.

We choose 4 sensors on the 11" floor of the building
recording vertical vibration to investigate their influence on
each other. Their positions are illustrated in Fig. 1. Since
the estimation of directed information requires the alphabet
of the data sequence to be finite and relatively small, the
sensor readings are discretized before the actual estimation
process. Due to computational constraints, the readings are
discretized to 5 levels. For more explanation and analysis of
discretization before directed information estimation, please
refer to literature [9].

Fig. 6 shows the result of four directed information
estimators applied on a pair of sensors. In this example,
the directed information between sensor B and sensor C
is estimated, under the influence of train passings. Each
sub-figure corresponds to an estimator introduced in section
II, and different estimators turn out to produce obviously
different results. Estimator I and II, as stated in section II,
produce negative results due to the mismatch between the
model and the reality, which is undesirable. On the other



hand, the results of estimator III and IV are nonnegative
in nature and easier to interpret. In this case, the inverse
directed information (inv DI) between sensor B and sensor C
is significant, while the directed information (DI) approaches
zero, indicating that there exists strong causal influence from
sensor C to B when train passes.

Following this example, we carry out directed information
estimation between each pair of sensors to obtain a causal
graph. Regarding directed information estimation below a
threshold (e.g. 0.1) as the influence of noise and ignoring
them, Fig. 7 shows the resulting causal graph consisting
of causal influence among the vertical sensors with or
without train passings. The change of pattern revealed in
two causal graphs demonstrates not only the event’s influence
on the building’s vibration characteristics, but also how the
building reacts to different kinds of vibration in different
ways. Specifically, we make following observations and
conjectures:

1) Observation: For natural vibration (no train), the edges
of the building influence the center of the building, not
otherwise.

Conjecture: Does natural vibration on the edge cause
the center to vibrate?

2) Observation: For forced vibration stimulated by trains,
the south wing (perpendicular to the railway) of the
building influences the north wing (parallel to the
railway), not otherwise.

Conjecture: Does the south wing cause, or contribute
to, the north wing’s vibration under train’s influence?
If so, What’s the structural reason for such influence?

3) Observation: Building’s vibration demonstrates clear

patterns.
Conjecture: Could we determine the critical district of
the building structure under different conditions, there-
fore help monitor, assess and secure the structure’s
health condition?

These observations and conjectures need to be further
studied and verified with the help and expertise from re-
lated fields, concerning structural mechanics and track traffic
system’s vibration characteristics. Answering these question
might provide new perspectives and verify knowledge or
models in these fields in return, leading to potential applica-
tions to better secure the building structures.

VI. CONCLUSION

We have made three major contributions focusing on
understanding building vibration. We first deploy a vibration
monitoring system in an office building near a railway to
study the influence of significant environmental events on the
building’s vibration characteristics. We then propose an event
detection method to identify relevant events, with evaluation
demonstrating that precise detection can be achieved with
proper algorithms. Finally we apply directed information
estimators to study the building’s vibration characteristics
under different conditions, revealing obvious changes in
vibration patterns and raising conjectures calling for further

research on the causal graphs of vibration and their interpre-
tation.

Many possibilities remain to be studied in future works.
First of all, Interpreting causal graphs and relating them with
the field knowledge of related domains is an open problem
that needs to be addressed. The introduction of directed
information based causal analysis casts light on civil en-
gineering and environmental engineering, where traditional
model-based analysis could be improved when coupled with
techniques in this paper. On the other hand, the event
detection algorithms, together with the deployed vibration
data acquisition system, still has great potentials to be
explored. Other than train passings, local events such as
human activities and seismic events such as earthquakes
are also possible detection targets with potential value and
application.
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