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ABSTRACT
Cities have long been considered as complex entities with
nonlinear and dynamic properties. Pervasive urban sensing
and crowd sourcing have become prevailing technologies that
enhance the interplay between the cyber space and the phys-
ical world. In this paper, a spectral graph based manifold
learning method is proposed to alleviate the impact of noisy,
sparse and high-dimensional dataset. Correlation analysis of
two physical processes is enhenced by semi-supervised ma-
chine learning. Preliminary evaluations on the correlation of
traffic density and air quality reveal great potential of our
method in future intelligent evironment study.

Categories and Subject Descriptors
I.2.6 [Learning]: [Knowledge acquisition]; I.4.8 [Scene Anal-
ysis]: [Sensor fusion]

1. INTRODUCTION
Sensors have become an essential part of urban lives. They

extend human senses by revealing ’unseen’ information lay-
ers. Trans-domain usage of sensor data and new emerging
paradigms can change urban lives and policy-making pro-
cesses by revealing hidden connections. Urban dynamics
is the social behavior of human beings, which is known to
relate strongly to environmental changes and resource con-
sumption. City can be reasonably considered as an inher-
ently human-driven self-organizing structure. Exploring the
correlation between human activities, environmental change
and resource consumption will be beneficial in many as-
pects including city plan, resource utility optimization, con-
venience improvement etc.

There has been a great shift by methodologies on urban
dynamic study: from model-driven paradigm to data-driven
paradigm[2]. The major challange now is how to perform
efficient analysis with regard to oceans of data(if available)
to obtain informative knowledge or prediction model. To be
specific, three aspects should not be neglected.

1) The unavoidable presence of noise or imprecision in
training data adds uncertainty to the reconstruction process.

2) The sparsity of data obtained from crowd urban sensing
cause incompleteness and heterogeneity of dataset both in
space and time.

3) Quantitive analysis among different physical process in
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different measurement is difficult. Semantic abstraction are
needed to gain meaningful information.

Our goal is to develope proper methods which could allevi-
ate the impact of noisy, sparse and high-dimensional dataset.
We propose manifold learning based method to perform se-
mantic abstraction, as well as spatial-temporal correlation
to understand the implicit relationship between two phe-
nomena.

2. SEMANTIC ABSTRACTION BASED ON
MANIFOLD LEARNING

Suppose that in a city, there are N adjacent but not in-
tersect areas A1, A2, . . . , AN . Each Ai, i ∈ {1, 2, . . . , N},
contains m blocks B1, B2, . . . , Bm. For every Ai, there are
m measurement(sensory data) coming from m blocks respec-
tively, denoted by Xi(t). Define the learning result(output)
as scalar dXi (t). So we have we have m-dimesional input
Xi(t) and one scalar output dXi (t) at time-step t in area Ai.

Suppose we have only partial knowledge about the input-
output mapping. And there are two inter-related process
Xi(t) and Yi(t), i ∈ {1, 2, . . . , N}. If we want to explore
the implicit relationship between them, traditional methods
adopt statistical methods such as canonical correlation anal-
ysis(CCA). However, it is hard to justify the meaning or sig-
nificance of study results. Here we propose a new paradigm
to perform correlation analysis. Firstly, for each dataset, we
adopt manifold learning methods to reduce the dimension
of data and obtain more ’abstract’ information, which we
could interperet as semantic level knowledge. Then spatial-
temporal analysis could be used to gain higher level knowl-
edge or prediction model. This approach is illustrated by
Fig. 1.
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Figure 1: Manifold Learning Correlation Analysis

To overcome the problem of overfitting by a learning ma-
chine, regularization is usually used to restrict the solution of
the hypersurface reconstruction problem by minimizing the
augmented cost function. Generalized regularization theory
extend classical theory by incorporating a second penalty
function that reflects the intrinsic geometric structure of the
input space. To be specific, the augmented cost function can



be expressed by

Ψ(F ) = Ψs(F ) + λAΨc(F ) + λIΨI(F ) (1)

Here, Ψs(F ) denotes empirical cost function. While Ψc(F )
denotes regularizer, which is dependent on certain geometric
properties of the approximating fuction. Thus, we propose a
manifold based method to find proper ΨI(F ), which implies
the intrinsic geometric structure of the input space. Here,
we pursue the kernel approach based on manifold regular-
ization. We use spectral graph theory to model a manifold.

Given this training sample, we proceed by constructing a
weighted undirected graph graph consisting of N vertices,
one for each input data point, and a set of edges connecting
adjacent vertices. Let any two nodes i and j are connected,
provide that the Euclidean distance between their respec-
tive data point xi and xj is small enough. Let wij denote
the weight of an undirected edge connecting nodes i and j.
Hereafter, we refer to the undirected graph, characterized
by the weight matrix W, as graph G. Let T denote an
N -by-N diagonal matrix whose ii-th element is defined by
tii =

∑N
j=1 wij , which is called the degree of node i. We

define the Laplacian of graph G as L = T−W.
Let ΨI(F ) = fTLf in equation (1).Define the vector val-

ued function f in terms of the training sample X:f = [F (x1),
F (x2), . . . , F (xN )]T . According to generalized representer
theorem[1], optimization of the cost function Ψ(F ) admits

the form F (x) =
∑N

i=1 aik(x,xi) , where k(·, ·) is Gaussian
kernel function.

3. CORRELATION OF TRAFFIC DENSITY
AND AIR QUALITY

There are two datasets that we used for analysis, within
the range of 5th ring road of Beijing city (E116.209-E116.544,
N39.76-N40.02). For traffic density, we use Beijing taxi
dataset with involves totally more than 20,000 taxi trajec-
tories in one month. For the air quality, we used the dataset
from our prototype system[3].

(a) traffic density 12am (b) air quality 12am

(c) traffic density 8pm (d) air quality 8pm

Figure 2: Traffic Density and Carbon Distribution

Fig.2 shows the density of vehicles and carbon-monoxide
levels, where each small cell denotes 1km×1km area. We
can see from Fig.2 that in downtown (inside the 3rd ring
road), the traffic density is usually higher than that of other
places, with the west region’s higher than the east region’s
in downtown. We can see an obvious ’hot zone’ of air qual-
ity, which indicates severe air pollution in that region. We
find that there are several chemical plants in the south of
Beijing city, which are reasonably responsible for the local
air pollution.

Fig.3 shows the learning results at selected area (Dong Tie
Ying Bridge, a 9 km2 region with center E116.43, N39.856).
We use a real value as uniformed index to represent the
learning outputs for this specific area. The blue real line de-
notes traffic density, while red dotted line denotes air quality.
It is inferred that the air quality is probably influenced by
population density. For the selected area, we can predict
with confidence the air pollution peak will occur approxi-
mately three hours later after the rush hour.
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Figure 3: A Semantic Abstract of Traffic Density
and Air Pollution in 24 hours

4. CONCLUSION
In this paper, we report our work progress on urban dy-

namics study. The major contribution of this paper is to
use manifold learning on city phenomena correlation anal-
ysis. It reveals the intrinsic structure of dataset by spec-
tral graph theory to achieve dimension reduction. In futhur
study, spatial-temporal correlation methods can be devel-
oped to obtain non-trivial results. Interesting applications
will be emerging towards better understanding of the cities.
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