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Abstract—A novel Adaptive Resource-based Probabilistic
Search algorithm (ARPS) for P2P networks is proposed in this
paper. ARPS introduces weighted probabilistic forwarding for
query messages according to the node degree distribution and
the popularity of the resource being searched. A mechanism is
introduced to estimate the popularity and adjust the forwarding
probability accordingly such that a tradeoff between search
performance and cost can be made. Using computer simulations,
we compare the performance of ARPS with several other search
algorithms. It is shown that ARPS performs well under various
P2P scenarios. ARPS guarantees a success rate above a certain
level under all circumstances, and enjoys high and popularity-
invariant search success rate.

I. INTRODUCTION

File sharing is one of the most popular applications of
P2P networks. Due to legal considerations, Napster [1] and
other P2P systems with centralized search indices have been
replaced by decentralized systems. There are currently two ma-
jor categories of decentralized systems, namely, the structured
systems and the unstructured systems. Today, most popular
P2P applications operate on unstructured networks, organized
in an ad hoc fashion, and can easily accommodate a highly
transient node population. To locate a resource becomes one
of the most challenging issues in this kind of systems.

To locate the target files, Gnutella [2] peers flood query
messages across the overlay network. The flooding is limited
to a given number of hops, defined by the Time-To-Live (TTL)
parameter of the query packets. Although it is simple and
capable of discovering the maximum number of objects in
the search region, this flooding scheme does not scale well. To
tackle this problem, many search methods have been proposed,
and they can be categorized as blind search and informed
search, based on whether the information about document
locations is used to locate the resources.

The basic goal of all such search mechanisms is to balance
the volume of control traffic and the search performance,
specifically, to control the volume of the query messages while
guaranteeing a certain level of search performance.

To accomplish this goal, the popularity of the resource, de-
fined as the probability that a randomly chosen node possesses
the resource, may be exploited. A high popularity indicates
that the resource can be located easily, and the cost for the
search will be correspondingly smaller. On the other hand, the

search for resources with lower popularity will produce more
messages, reach more nodes and often suffer from low success
rate. That is to say, under the same search mechanism, the cost
(defined as the number of messages produced or the number
of peers contacted) and search performance (defined as the
success rate and number of hits) are different between popular
and unpopular resources. But both the blind and informed
search methods seldom take the popularity into consideration,
treating the resources with different popularities in the same
way.

Recent measurements of Gnutella, a highly popular P2P file-
sharing system, show that the underlying network topology has
a power-law node degree distribution [10]. The node degrees
exhibit high variance, with a few nodes having very high
degrees while many others, low ones. Therefore, whether and
how the search methods exploit the power-law distribution in
the node degree will greatly impact the search performance
and cost.

In this paper we present a novel adaptive resource-based
probabilistic search algorithm (ARPS) for P2P unstructured
networks. ARPS considers the degree variance and the differ-
ence in popularity amongst the resources. In ARPS, a node
uses weighted probabilistic forwarding for query messages,
varying the forwarding probability according to the popularity
of the resource being searched and its own degree. Peers
estimate the popularity of the resource in the network based
on feedback from previous searches. As we will show in
this paper, ARPS exhibits several desirable characteristics on
power-law networks, such as high accuracy for unpopular
resources, much lower cost for popular ones, and excellent
adaptability in scenarios with dynamic popularity. That is
to say, ARPS achieves a better tradeoff between cost and
performance than traditional methods over a wide range of
P2P scenarios.

The rest of the paper is organized as follows. In Section II,
we describe our work in the context of related research.
Section III presents some analytical results of probabilistic
search. Section IV describes the ARPS algorithm. Simulation
results are provided in Section V. Section VI concludes the
paper and outlines the future work.
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II. RELATED WORK

Many search algorithms for unstructured P2P networks have
been proposed in the last few years. Modified-BFS [3], a
variation of Flooding, determines a ratio of the neighbors to
forward the query messages. In Random Walks [4], another
alternative to Flooding, a query node sends out k query
messages to an equal number of randomly selected neighbors.
These queries are often referred to as walkers. Each walker
follows its own path. The intermediate node, upon receiving a
walker, randomly chooses one neighbor to forward the query if
it does not possess the resource. The walker terminates either
with a search success or when TTL becomes 0.

Adaptive Probabilistic Search (APS) [5], an adaptive search
algorithm, utilizes the feedback from previous searches to
make future searches more efficient. Each node maintains a
table for the forwarding probability to each neighbor for each
resource. APS employs k random walkers to search for the
required resource, and each intermediate node forwards the
query to one of its neighbors with a probability given by its
table index. Index values are updated after each query using
the feedback from walkers. If a walker succeeds (fails), the
relative probabilities of the nodes on the walker’s path are
increased (decreased). The update procedure takes the reverse
path back to the requester.

ARPS, proposed in this paper, is an adaptive search al-
gorithm, and follows the probabilistic search instead of the
random walk approach. Search with probabilistic forwarding
is first analyzed in detail in [6]. In the algorithms introduced, if
a peer does not find the resource in its LD (Local Directory)
and DC (Directory Cache), it will send a search request to
each peer in its neighborhood with a certain probability (called
broadcast probability). In contrast to ARPS, the forwarding
probability in [6] is a static parameter, and determined at
system initialization. Also, [6] only consider the random graph
topologies.

Unlike other methods, ARPS takes the popularity of the
resource into consideration. Peers keep estimating the pop-
ularity of the resource it has requested instead of the states
of the outgoing links or immediate neighbors. In order to
track the popularity of the resources, an adaptive algorithm
is introduced. Based on the estimation, a proper forwarding
probability is chosen to propagate the query messages. ARPS
also considers the node degree variance of peers. According
to its own node degree, peers use the weighted probability to
forward the query to further reduce the messages. Specifically,
in ARPS, peers forward the query messages to its neighbors
with small weighted probability if the resource being searched
is with high popularity, and vice versa. The weighted proba-
bility is smaller for high degree nodes compared with that for
low degree ones. As each node has a different degree and has
its own estimation of the popularity, the probability is changed
at each node the queries reach.

Probabilistic search, by properly choosing the forwarding
probability, allows a tradeoff between the search cost and
performance.

III. PROBABILISTIC SEARCH

We employ generalized random graphs (GRG) [8] to model
the topology of P2P networks, and use the analytical frame-
work in [9] to model the search strategies of probabilistic
forwarding. A GRG represents a family of graph instances
with a given number of vertices (nodes) where the degree of a
randomly chosen node is specified by an arbitrary probability
distribution. Results for a GRG actually have to be viewed as
averages over the entire set of possible graph instances. The
main results on the use of GRG to model the overlay networks
are developed from the following two different generating
functions for probability distributions.

The generating function for the probability distribution of
the vertex degree is

G0(x) =
∞∑

k=0

pkxk, (1)

where pk is the probability that a randomly chosen vertex has
degree k.

The generating function of the degree distribution of the
nodes reached by following one end of a randomly chosen
edge (the starting edge is excluded) is

G1(x) =
G′

0(x)
G′

0(1)
=

1
z
G′

0(x), (2)

where G′
0(x) is the first derivative of G0(x), and z = G′

0(1)
is the average node degree. The generating function of the
number of nodes two hops away is given by

∞∑
k=0

pk[G1(x)]k = G0(G1(x)). (3)

Therefore, the generating function for the number of
peers h hops away from a randomly chosen node is
G0(G1(. . . G1(x) . . .)︸ ︷︷ ︸

h−1

).

The message forwarding function g [9] represents the query
forwarding probability of the peers. In probabilistic search,
each peer propagates the query to its neighbor with probability
pf . The function is in the form of:

g(d) = pf ,∀d < TTL. (4)

The probability that the query originator transmits the search
message to n of its neighbors is given by

qn =
∞∑

k=n

pk

(
h

n

)
pn

f (1 − pf )k−n. (5)

The generating function for the number of peers that receive
the query in the neighborhood of the requester is

Q1(x, g) =
∞∑

n=0

qnxn = G0(1 + pf (x − 1)). (6)

The generating function for the number of peers at distance
h hops from the query originator that receive the message is

Qh(x, g) = Q1(Q1(. . . Q1(x, g), g . . . , g)︸ ︷︷ ︸
h−1

, (7)
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with

Q1(x, g) = G1(1 + pf (x − 1)). (8)

The generating function for the total number of peers that
receive the query message under the constraint of TTL is given
by

Q(x, g, TTL) =
TTL∏
m=1

Qm(x, g). (9)

From Equation (9), the average number N of query mes-
sages sent throughout the network is

N = Q′(1, g, TTL). (10)

Let p denote the resource popularity. The probability that,
among all neighbors of the query originator that receive the
query message, n peers own the resource is

P (n, p) =
∞∑

k=n

qk

(
h

n

)
pn(1 − p)k−n, (11)

with the generating function

H1(x, g, p) =
∞∑

n=0

P (n, p)xn = Q1(1 + p(x − 1), g). (12)

The generating function for the total number of resource
owners that receive the query message with the constraint of
TTL is

H(x, g, p, TTL) =
TTL∏
m=1

Hm(x, g, p), (13)

where Hm(x, g, p) = Qm(1 + p(x − 1), g).
From Equation (13), the probability P that the resource can

be found (at least one hit returns) is given by

P = 1 − H(0, g, p, TTL). (14)

As the degree distribution of popular P2P networks ex-
hibits high variance with power-law characteristics, we use
Equations (10) and (14) to obtain the numerical values for
the power-law overlay topology with pk = κ−τ e−k/κ

Liτ (e−1/κ)
, where

Lin(x) is the nth poly-logarithm of x, and τ , κ are the power-
law exponent and cutoff, respectively.

Figure 1 gives the mean message number produced for
different forwarding probabilities. As a branching process, the
message number drops dramatically with the decrease of the
forwarding probability. Figure 2 presents the numerical results
of the success rate versus the popularity of the resource being
searched. For popular resource, probabilistic search with small
forwarding probability can achieve a success rate close to
flooding (pf = 1).

We can conclude from the analytical results that probabilis-
tic search shows more flexibility, since the success rate and
message number can be adjusted by choosing different pf ,
allowing a tradeoff between cost and performance.
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Fig. 1. Message generated vs. forwarding probability (with τ =
2.041289, κ = 500)
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Fig. 2. Success rate vs. resource popularity (with τ = 2.041289, κ = 500)

IV. THE ARPS ALGORITHM

A. Algorithm Description

Unlike the analytical model, in real P2P scenarios, because
of the self-organized and distributed nature of P2P networks,
it is unrealistic for a node to keep accurate information of the
resources such as popularity in the network. A mechanism
should be introduced to estimate the popularity. Also, as
different nodes have different node degrees and are located
at various distances from the resources, the popularity estima-
tions will be different. So for each resource, each node has its
own forwarding probability, and the probability is changed in
a hop-based manner along the path.

In ARPS, each node keeps a local index on the popularity
estimate for each resource it has requested or forwarded
queries. During a search process, a node first finds the resource
in its local index. If there is no match, meaning this is the
first search for the resource, the peer will send queries to
its neighbors by flooding, with a forwarding probability of 1;
otherwise, according to the estimated popularity, a reasonable
probability is chosen to forward the message.

B. Algorithm Improvement

In power-law networks, the node degree varies greatly; a
few nodes have very high degrees while many others have
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low ones. Though the nodes with high degrees generally are
limited in number, they play an important role. These nodes
are often utilized when designing efficient search algorithm
[10]. As Figure 2 illustrates, the forwarding probability can
not be too small (less than 0.4); otherwise, the performance
of probabilistic search will degrade dramatically. But even
with small probability, these high degree nodes produce a
significant volume of messages. Moreover, the high degree
nodes will be encountered more often. In power-law networks,
a large number of links point to only a small subset of high
degree nodes; therefore, the link of a randomly chosen node
preferentially leads to a high degree node.

In ARPS, the forwarding probability will be adjusted ac-
cording to the node degree, in order to minimize the number
of messages. Here we introduce the parameter η called Degree
Weight. For node i,

ηi = �logDi/D
10 �. (15)

Di denotes the node degree of peer i, and D is the average
node degree of the network. ηi describes the degree character-
istic of each peer. Each node adjusts the forwarding probability
according to the estimated popularity and the Degree Weight.
So in ARPS, the query is forwarded in a weighted probabilistic
manner.

C. Update Equation and Forwarding Probability Selection

The update equation for the estimate of one specific resource
at each node is given by

ps(k + 1) = β · ps(k) + ∆k (16)

∆k =
N∑

n=1

(
1

dout · pf (k)

)hn

. (17)

For each node, suppose it has requested or forwarded
requests for R different resources. The node maintains a table
of R entries, with an entry for the estimated probability of
each resource. Specifically, let ps(k), pf (k) denote the current
popularity estimate and forwarding probability of the resource
r after the kth update, respectively. β is the decay rate, and
dout denotes the average out degree of the node.

During the new round of search for resource r, after
forwarding the query message with the proper probability,
the peer decreases the estimated popularity by a factor β.
If a query fails to locate a resource when TTL is reached,
nothing needs be done to further reduce the index entry, as
the estimated popularity has already been decreased because
of the unsuccessful search. If the search is successful, suppose
there are N backward hits passing along the reverse path to the
originator. When the messages arrive at the intermediate peer,
hn is the hop distance from the node to each resource owner.
∆k incorporates a distance-based function for modifying the
relative estimated popularity. Though the estimated popularity
will decay with rate β after each search, with the increase
of hit number, we get a larger ∆k, which compensates the
estimation decay. If ps(k + 1) > 1, ∆k is set to 1. So we

TABLE I
FORWARDING PROBABILITY SELECTION TABLE

Estimated Popularity Interval ps Forwarding Probability pf

[0, 0.0001) 1

[0.0001, 0.005) 0.9

[0.005, 0.001) 0.8

[0.001, 0.005) 0.7

[0.005, 0.03) 0.6

[0.03, 0.16) 0.5

[0.16, 1] 0.4

finally get the estimated popularity after the (k + 1)th update
in the form of:

ps(k + 1) = min(β · ps(k) + ∆k, 1). (18)

Besides the resource popularity estimation table, each node
also contains a forwarding probability selection table, which
is a piecewise projection from popularity to forwarding prob-
ability. When a node initiates or forwards a query message for
the search of a resource with estimated popularity ps, it looks
up the table to find the proper forwarding probability pf .

Based on the parameter η, each node propagates the mes-
sage with the weighted probability p′f . The relation between
pf and p′f is as follows:

p′f = max(pf − η

10
, 0.1). (19)

The minimum probability (0.1) guarantees the search perfor-
mance, as even a small part of the neighborhood of high degree
nodes plays an important role as hubs in network searches.

The numerical value of the piecewise projection in the selec-
tion table is obtained from the analytical model in Section III,
with a targeted success rate of over 80%.

V. SIMULATION RESULTS

A. Simulation Scenario and Performance Metrics

To simulate the P2P network topology, we generate the
power-law graph with exponential cutoff. The degree distribu-
tion is the same as the analytical one with an average degree of
3.5 (similar to Gnutella-type graphs [7]). The default graph has
10000 nodes. In order to simulate the resource with popularity
p, �p × 104� nodes are randomly selected and marked as the
resource owners in the network. In ARPS, the decay rate β
is 0.8. As ARPS uses probabilistic search, in each simulation
round, at least one query is propagated from the originator.

The performance of ARPS is compared with several other
search methods, including Flooding, Modified-BFS and APS.
For Random Walks, the requesting node sends out k = 3 query
messages. In Modified-BFS, nodes randomly choose 3 of their
neighbors (if the neighbor number is less than 3, then all the
neighbors are chosen) to forward a query message. In APS,
we simulate the algorithm in the pessimistic approach with
different walker numbers and TTL pairs. The evaluation and
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TABLE II
SUCCESS RATE COMPARISON

pf = 0.9 pf = 0.8

p GRG Sim Err (%) GRG Sim Err (%)

0.005 0.9519 0.9195 3.40 0.9184 0.8805 4.13

0.01 0.9634 0.9277 3.70 0.9352 0.9065 3.07

0.02 0.9723 0.9348 3.86 0.9489 0.9181 3.24

0.05 0.9814 0.9360 4.63 0.9634 0.9213 4.37

0.1 0.9869 0.9489 3.85 0.9726 0.9320 4.18

0.2 0.9914 0.9576 3.41 0.9809 0.9381 4.36

0.3 0.9938 0.9853 3.38 0.9853 0.9360 5.01

0.4 0.9953 0.9645 3.09 0.9883 0.9427 4.62

0.5 0.9964 0.9801 1.64 0.9907 0.9520 3.91
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Fig. 3. Messages per query for different search methods.

comparison of the search performance are based on the metrics
of messages per request, success rate, and hits per request.

For the dynamic settings, for ease of result interpretation,
time is normalized with respect to the search rounds. So t = j
refers to the time at which the jth search takes place.

B. Experimental Validation

To verify the analytical results derived in Section IV,
we simulate the probabilistic search with different uniform
forwarding probability pf , and compare the simulation results
with the analytical ones. This validation is necessary since the
analytical model is based on the assumption that the number
of newly visited peers at each hop is independent. Table II
shows the analytical and simulation results of the success rate.
Probabilistic search with different forwarding probabilities are
compared. The deviation between the analytical and simulation
results is due to the limited number of nodes of the generated
power-law graph in the simulation and the independent as-
sumption of the analytical model.

C. Search Performance and Comparison

Figure 4 shows the success rate for the search of resources
with different popularities. Flooding gives the highest suc-
cess rate but at a cost of the poorest scalability under all
circumstances. Because of the high degree nodes, Flooding
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Fig. 4. Success rate for different search methods.
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Fig. 5. Hits per query for different search methods.

propagates the query message to nearly 70% of all the nodes
in the network within 4 hops, generating a huge volume of
messages.

Modified-BFS exhibits low success rate for resources with
low popularity. By increasing TTL, more query messages are
propagated, and Modified-BFS increases the success rate in the
search for unpopular resource and returns more hit messages.

Compared with Random Walks, APS achieves much higher
performance with the same overhead. But for unpopular ob-
jects, the success rate and hit number still remain low. This
can be explained by the fact that the method produces limited
number of messages and the message numbers stay almost the
same for resources with different popularities. Therefore, less
popular objects receive considerably fewer queries, leading
to miserable success rates. In order to make the algorithm
efficient, we have to increase the value of walkers or TTL.
As Figures 3 and 4 illustrate, the increased walker number
and TTL (k = 10, TTL = 20) generates more messages,
and improves the success rate to a certain extent. But the
improvement is limited due to two reasons: first, the average
node degree is limited, and walker number larger than the
node degree will not generate extra messages, as fewer than
k walkers will be used; second, with larger TTL, the high
degree nodes will be encountered much more often, which
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Fig. 6. Messages per query for different decay rates (with average value of
509.74 for β = 0.7 and 345.33 for β = 0.9)
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Fig. 7. Success rate for different decay rates (with average value of 97.00%
for β = 0.7 and 95.27% for β = 0.9)

causes routing loops.
ARPS presents a striking contrast to these methods, with the

message number decreasing dramatically at high resource pop-
ularity due to its adaptive mechanism. For unpopular resource,
pf is quite high for each hop, and ARPS functions similarly
to Flooding. The weighted forwarding probability decreases
as the popularity increases, which results in the dramatic
dropping of the number of messages generated. Because of
the adaptive mechanism, ARPS enjoys a high success rate. In
fact, from Figure 4, we find that the success rate is popularity
invariant, which is a good characteristic. Figure 5 shows that
the hit number is also invariant with popularity. In summary,
ARPS achieves a good tradeoff between performance and cost.

D. ARPS Performance with Different Decay Rates

We compare ARPS with different decay rates in the dynamic
scenario. At t = 0 the resource of interest has popularity
ps = 0.02. The popularity is increased to 0.2 at t = 500
and decreased to 0.02 at t = 1000.

Figure 6 shows that under both decay rates the method
succeeds in adjusting the number of messages generated in
accordance with the popularity changes. ARPS with small de-
cay rates produces more messages, as the estimated popularity
stays low, resulting in high forwarding probability. Figure 7

shows that for both decay rates, ARPS maintains success
rates above a certain level. The rate for ARPS with β = 0.9
fluctuates more, and does not stays as high as the one with
β = 0.7. We conclude that a large β is too aggressive when
the popularity is low, or changes rapidly.

VI. CONCLUSION

In this paper, we propose a novel Adaptive Resource-based
Probabilistic Search algorithm (ARPS) for P2P networks.
ARPS utilizes weighted probabilistic forwarding in a hop-
based manner, with an adaptive mechanism to choose the
probability. Furthermore, the high variance of node degrees
in power-law networks is taken into consideration in the
algorithm. ARPS gives a guaranteed success rate above a
certain level under all circumstances, and this high success
rate is popularity invariant. At the same time, the number
of messages generated adapts to the variation of the resource
popularity. All these characteristics make ARPS desirable for
P2P scenarios.

ARPS stores the popularity estimates of all resources in
the network. This would require O(n) memory space, where
n is the number of resources in the network. The memory
requirement of ARPS is less than that of APS. Besides the
need to adjust pf , ARPS incurs no additional overhead, which
makes the algorithm very simple to use.

Though ARPS exhibits several good characterizes, the per-
formance of ARPS depends on the decay rate to some extent.
In the future, we plan to develop a control model to find a
better projection from popularity to forwarding probability to
further improve the search performance of ARPS.
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